Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration.
نویسندگان
چکیده
Lys120 in the DNA-binding domain (DBD) of p53 becomes acetylated in response to DNA damage. But, the role and effects of acetylation are obscure. We prepared p53 specifically acetylated at Lys120, AcK120p53, by in vivo incorporation of acetylated lysine to study biophysical and structural consequences of acetylation that may shed light on its biological role. Acetylation had no affect on the overall crystal structure of the DBD at 1.9-Å resolution, but significantly altered the effects of salt concentration on specificity of DNA binding. p53 binds DNA randomly in vitro at effective physiological salt concentration and does not bind specifically to DNA or distinguish among its different response elements until higher salt concentrations. But, on acetylation, AcK120p53 exhibited specific DNA binding and discriminated among response elements at effective physiological salt concentration. AcK120p53 and p53 had the highest affinity to the same DNA sequence, although acetylation reduced the importance of the consensus C and G at positions 4 and 7, respectively. Mass spectrometry of p53 and AcK120p53 DBDs bound to DNA showed they preferentially segregated into complexes that were either DNA(p53DBD)(4) or DNA(AcK120DBD)(4), indicating that the different DBDs prefer different quaternary structures. These results are consistent with electron microscopy observations that p53 binds to nonspecific DNA in different, relaxed, quaternary states from those bound to specific sequences. Evidence is accumulating that p53 can be sequestered by random DNA, and target search requires acetylation of Lys120 and/or interaction with other factors to impose specificity of binding via modulating changes in quaternary structure.
منابع مشابه
Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53.
The tumor suppressor p53 induces apoptosis by altering the transcription of pro-apoptotic targets in the nucleus and by a direct, nontranscriptional role at the mitochondria. Although the post-translational modifications regulating nuclear apoptotic functions of p53 have been thoroughly characterized, little is known of how transcription-independent functions are controlled. We and others ident...
متن کاملp53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage.
The p53 tumor suppressor protein is a sequence-specific transcription factor that modulates the response of cells to DNA damage. Recent studies suggest that full transcriptional activity of p53 requires the coactivators CREB binding protein (CBP)/p300 and PCAF. These coactivators interact with each other, and both possess intrinsic histone acetyltransferase activity. Furthermore, p300 acetylate...
متن کاملOpposing roles of H3- and H4-acetylation in the regulation of nucleosome structure—a FRET study
Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the in...
متن کاملID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation
Given that mutated p53 (50% of all human cancers) is over-expressed in many cancers, restoration of mutant p53 to its wild type biological function has been sought after as cancer therapy. The conformational flexibility has allowed to restore the normal biological function of mutant p53 by short peptides and small molecule compounds. Recently, studies have focused on physiological mechanisms su...
متن کاملAcidic domains: “converse readers” for acetylation code
During past decades, acetylation has emerged as a general post-translational modification that is widespread and distributed on lysine residues of histones and nonhistone proteins. Lysine acetylation has been suggested to create a platform for the recruitment of bromodomaincontaining proteins that serve as “readers” to decode information within the acetylated lysine residues [1]. However, the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 20 شماره
صفحات -
تاریخ انتشار 2011